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CONTRIBUTIONS TO RADAR TRACKING ERRORS FOR A TWO-POINT
TARGET CAUSED BY GEOMETRIC APPROXIMATIONS

1. INTRODUCTION

In tracking an extended radar target, an accurate measurement of the target's position is
essential. A target is extended (1, p.1] if "its size is sufficient to cause glint errors which exceed
the other errors of the system." However the composite signal at the receiver induced by the
scattering elements comprising such targets can cause substantial measurement errors of position
[1,2,3]. Therefore accurate chara.terizations of the measured (apparent) range and angular errors
of extended targets are important. In Ref. 1 [Ch. 1], these errors are quantified for a two-point
target, but an error is introduced by approximating the range to the centroid of the two-point
target. Since the accuracy of the characterization has practical significance for radar systems in
terms of observed glint errors, this issue is investigated for the ideal situation of a two-point target
in a two-dimensional geometry to gain further insight into this problem. Exact expressions of the
range and angular errors and an alternate set of approximations to them are derived. Both sets
of approximations are compared to the exact errors. These errors depend on the phase (1s) of
the composite s:gnal, on the differences between the distances from the radar to the two scattering
centers and tihe centroid of the target, and on the relative size of the amplitudes of the individual
scattered fields from each center (E1/E 2).

The alternate approximations are obtained first by expanding appropriate parts of the errors
in infinite series and then by truncating the series. The truncated series are polynomials in the
ratio of the distance separating the two scattering elements to the actual distance from a radar to
the centroid of the scatterers. The differences between the exact errors and the tuo distinct sets of
approximations to them are exami:.ed as a function of this ratio. Advantages and shortcomings of
each set of approximations are identified. The exact expression for the angular error :s shown to
reduce both to the first-order approximation and to the expression of Ref. 1 [Ci. 1], %lhen certain
approximations are made; however, such is not the case for the transverse and radial range errors.

First the problem is defined, the geometry is specified, and exact expressions for the range
and angular errors are deri~ed. This is followed by a discussion of the approximations to the errors
and by an analysis of the impact of the approximations relative to the exact expressionb for two
examples. In particular, limits of the ratios of the different range errors are analyzed in detail.
An X-band system (10 GlIz) and a large aircraft, %hich is characterized by a separation of 50 m
between tile scattering centers, are assulned in both examples. The examples represent an aircraft
that is in its landing approach or at a range of roughly 200 unii.

2. DEFINITIONS

To have consistent terminology, the folloing definitions are extracted from Ref. I and sum
marized. In keeping with the definition of an extended target, partition the target's surface by
subdividing the associated volume uith a fine, three-dimensional grid. When the radar obbere.,
the target, each small surface element contributes to tile total received signal. Thobe elements tha;
produce strong scatter are called specular points [-]. Usually a target has many specular points. An
individual point cottributcs. randomly to the echo signal'- amplitude and to the apparent p.)bitioh
of the extended target, which %aries according to the relative motion between the ph.sical target
and the radar. Coummquetly, "a specular point is not any particular geometric point on the surface
of tile extended target;" rather it "represents a combination of scattering elements iich return a
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Gaussian signal. Other specular points are similarly composed, and their signals are statistically
independent [5,6]."

"Hence, a mathematical model of the extended target must meet two requirements: (a) it
must take into account the phybia. processes which affect radar tracking of the target's extended
features, and (b) it must yield results Nuhich predict accurately the practical performance of the
tracking radar. One such model, the n-point model [7], represents the target as the sum of a
large number of random, independent specular points, filling the space occupied by the target."
An n-point target model consists of it specular points that can be either independent isotropically
reflecting point targets, independent complex reflecting objects, a combination of the two, or any
of the preceding where a statistical correlation exists between the scattering centers.

"The number of specular points used to represent the target... may be reduced to a small value
for practical purposes, and in some cases the two-point model is used" [2,8,9]. This analysis is
undertaken for a t\ko-point target, but may have implications for a more complicated extended
target.

3. EXACT CHARACTERIZATION OF RANGE AND ANGULAR ERRORS

Initially the bistatic case is treated, from which the more prevalent, monostatic situation is
obtained as a special case. These geometries are depicted in Figs. 1 and 2. The formulation of
Ref. 10 is followed. In particular, the origin of the inertial frame is chosen to be the location of
the transmitter. In Fig. 1, P and P2 are the positions of the scattering centers at a given instant
of time, 0' is the midpoint of the line segment P 1P2 whose length is 1, P is the observation point
(location of the receiver) of the scattere(d field, ro0 and 7o2 are the position vectors from the origin
to points P and P2 , respectively, and Yj and 72 are the vectors from P to P'o and P to Po,
respectively. For the sake of argument, assume the magnitudes of i and -fo are respectively less
than the magnitudes of7 2 and f02; that is, r, < r2 and r0 1 < r02 .

The scattered electric field at P due to the ith specular point has the form E, cos[(t - t) + 6,]
for i E {1,2}, % here w is the angular carrier frequency, b, is the pliase induced by the ith scatterer, t,
is the time delay at P over the path from 0 to P, to P,, and E, is the amplitude of the ith scattering
center and is proportional to the square root of its effective radar cross-section. This interpretation
of 6, agrees with that of Ref. II [Eq. (71)]. Under the assumption that the polarizations from P
and P are identical, the composite signal received at point P and time t is

es(t) = c(t.) + e.(t) = Ei cos[w(t - tI) + 61] + E2 cos[w(t - t2) + 621 = Es cos(wt - V1 s), (1)

for the inidividual fields cl and c2. The composite phase and amplitude are ; s and E, which after
some algebra can be written as

={fVZt + E2 + 2E, E,_ cos(6l - 62. + b), for E E2 ((

s 2E[I + cos(61 - 62 + t)], for El = E2 , and
= [3+ 'l,, (2(b))

where

2



NRL REPORT 9349

fi=W(t 2 + tf)/2, (3(a))
ti(ri + roj)/c, (3(b))

El sin 4~~+E i (3(c))

El Cos(61+-22 +E 2 COS 62--) , for E, $£t(b t an~ = L ) frE ,2 (3(d))

for£LE2

and c is the speed of lighit ill free space.
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The expressions for Eq.(2) are obtained by substituting the identities, 61 -- wt, = 61 - P - 0/2
and 62 -wt 2 = 62 -P+¢/2, into Eq.(1) and simplifying the resulting equations. Clearly ;s depends
on w, ri, r2, r01, r02, 61, and b2. To simplify subsequent equations, the following definitions of
real-valued scalars are used

r -r2 au _ ro 1 +r0 2  6r=r 2 -ri, 6ro = r0 2 - r 1 , D=6r+-ro. (4)
2 = a0 2

Rewriting f3 and ¢b in this nomenclature leads to

I3= (ra + rao) and / = -(6r + ro). (5)
c c

As a result of various errors, the location of the target measured by a tr:.cking radar is not
necessarily any of the points P1, P2, or 0. Let the location of the measured c,.ntroid be denoted
PAC, with associated vectors Tm and P,n0 and magnitudes pm and pmo from PAC to P and 0 to
PAC, respectively (Fig. 1). According to propagation theory [12, pp. 224-227] and experimental
measurements [3], the apparent center PAC is determined from the phase ,Ps of the composite
signal, that is, the direction of Pm is the direction of the gradient of V/s evaluated at P, while its
magnitude is specified by

OW IsP

where the partial derivative is the group time delay. Exact expressions for these two quantities are
now derived.

First observe that

80 _ 1(.r ) aw oriE (6)
a 1 (ra + rao), for El E 2.

C6

When E, and , are constant for the range of frequencies under consideration, this equation sim-
plifies to

0..= c E+E2+2Ej 2 cos(6 2 -6,-,0)' forE E

I ,'+ for E =B2.

Since this analysis takes place in the plane determined by the points 0, PI, and P2, the gradient
depends on two spatial variables. A natural choice is the set of polar coordinates (r, 0) relative to
the ut-coordinate frame, %hose origin is located at 0' with the positive u-axis perpendicular to
i'1 2 and the positive v-axis coinciding with 0'J'T (Fig. 1). Therefore the gradient V0 5 evaluated

at P is

viS1po = + o ()

where 6r and 69 are the polar unit vectors. Let (to,00) and (r,0) represent the polar coordinates
of the points 0 and Po, respecti, ely, and let Yo and I be the associated position vectors from 0'
with magnitudes r0 and r.
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Before calculating Vos, the functional relationships between ra, rao, 6r, 6ro and r, 0, To, 0o

are determined. Assuming r, and ro, are greater than 1/2 and applying basic trigonometry leads to

rol = r - rolsinOo + 12/4, (9(a))

t02 = ro+TolsinOo+1 2/4, (9(b))

r, = Vr 2 - rlsin0 + 12 /4, (9(c))

ro = V/r2 + rsill 0 + 1-/,, (9(d))

which express the dibtances rol, r02, r1, r2 in terms of the polar variables r, 0, ro, 
0o. Substitute

these expressions into Eq. (1) to get

ro = 5r6 -rolsinOo +1 2/ 4 +r +rolsinOo + 2/' ), (10(a))

ra = - -rl/si,,0 + 12/,1 + V/r2 + r/sin0 + 12/,1), (10(b))

6ro = Vi + roisi o + 121, - ro - rolsin 0o + 01,1, (10(c))

6r = /r2 + r/sin0 + 12/4 - /r2 - r/sin 0 + 12/4. (10(d))

Replace the appropriate quantities of Eq. (2(b)) by the preceding expressions to obtain

fElsin (6i+-!!(6r+6ro)] +E.Sign [62--!:(6r+6ro)l E

= J -, + Tao + arctan oL+(6.+6.o)+Eos- .- +o)I , for Ei = E,2Cos6+ :(r+6o)j +cos [.- -(6r+6ro)j o ~ 2

rta{sill 61+-!:(6r+6ro)I +SiIz 62--:-6r+6ro1I
(II)

As a brief aside, note that 's clearly depends on the carrier j, EI/E 2, r, + r2, and r - r,. Now
taking the partial deriati'.es ilicated in Eq. (8) and making boine minor algebraic adjustments
yield

OWsI w 2r +Isin0 2r- lsin0
-- I -r p, ,c 2 + risinO + 1-/, + r - r/sin0 + 12/,

+( 2r+Isin0 2r - lsinG

+ r- + ,i sill 0+ r-/4 - ,- r lsill 0 + 1 /1 )

x -- ;}2 (12(r.))
+ ~2E Ecos[ -6-(r ro /c

t OV's W 1 wf ICos 0- 1 Cos 0

r O~j. ic rirsinO0+1V/.7 V;7 -rli 10+ 1 /,I
1 cos o t cos 0

+ n p c /r i + lsiino + 121 + /r2 - rlsin 0 + 12/,1

x+ r + IE, +1 (12(b))

E? + El + 2E, r;,, c05f62 - (br + bTo)w/c]
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when E, 3 E2. If E, = E 2, the expressions for the partial derivatives are obtained from Eqs.
(12(a)) and (12(b)) by omitting the product terms so that only the first two terms remain for each
partial.

The angular error between the measured (apparent) and actual locations of the target is the
angle from E, to Vts in the counterclockwise direction. In the geometry of Fig. 1, 0 is an acute,
negative angle and

tan = I fs /OVs (13)rOG / 0r (3

No standard definition of a formula to represent the range error currently exists. However two
natural candidates are the radial range error Re and the magnitude p of the vector error ( -T.),

which are given by

R= r-pn = II - IPI and p = = i-5 -m. (14)

A third choice is the range error projected along the actual direction

Ar = r - IProjection of , onto If = r - Pm cos . (15)

It is clear from the geometry of Fig. I that relationshipb among these errors exist. If a fourth error
(AL P sin ,). the error in the direction transverse to J, is defined, these relationships may be
quantified. In particular, Ar and AL are the orthogonal components of T. Since

p2-= (Ar)2 + (AL)2 = R +,lrp,,,sin2 ( /2), (16)

p is clearly the largest error. Observe that

r - r.-+r.2 D 
for=2- E+ F:o[:6-., /] for Ei 96 E.

Re= . (17)
r - +-,+ for E = E2

is the only error independent of 0 and that p and [ArI approach IR,[ in the limit as 5 approaches
zero.

In analyzing expressions for the errors, it is useful to introduce three new parameters,

To-, -= -, z =-
0 7 'E

ro . r (S

the first tMo of % hikh are numbers bietmcen zero and one for this application. Although the equations
for the errors of the histatic case can be reformulated in terms of lo. 7, and zo. the mnonostatic
case is treated instead because it has greater aplplicability to radar scenarios, not to mention that
the calculations are much less cumbersomne. Results for monostatic tracking radars are obtaired
hby setting

r=ro, ra=rno, 0 0o, CT-ro, 6e=eao, 6r=6ro, 0= o, '=o0, (19)

and the corresponding geometry (Fig. 2) is obtained by letting the point P coincide with 0.
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Therefore in the monostatic case for zo $ 1, the expressions for 1bS and the various errors
become

tan ycos 0 6r +2ra, z02
2 r + I + 2zo cos[ - 6 - 2w6r/c]

{2ra 7 ,sin r + sin0- )
r 2 s r r- 2-r

I - -2
x 1-0 (20(a))

z6 + + 2zo cos[62 - 6i - 2wbr/c]

Re=r-ra - 6r  1

za + 1 + 2zo cos [32 - 61 - 2w6r/c](

Ar=r-coso4ra+6r + 2 1 (20(c))
z6 + I + 2zo cos[b2 - b, - 2w6r/c] (

AL=si,,q{ra +6r 2 1-Za ( d
Z- + I + 2zo cos[62 - bi - 2,,Sr/cj] ' (20)

sin [1 + w6r/c] + zo sin [62 - wr/c]a[ + rctan, sn[S! + w6r/c] + z0 s[32 -rc , (0()0. wrs aca (20(c))

while for zo = 1

-Y Cos0 J r ra-y I Sin r
tan 0 = 2 r sin0 (21(a))

R= r - ra, (21(b))

Ar =r - r cos , (21(c))

A L = ra sin , (21(d))

P 2 wra i 6+ 62(21c)Vs 2 (2 1(c))
c 2

Clearly Eqs. (21) are directly obtainable from Eqs. (20) by letting z0 be unity; however, one
would not arrive at Eqs. (21) if the argument of the cosine, b2 - 61 - 2w6r/c, is set equal to zero
before letting zo be zero. When calcthiting such limits, they must be taken in the proper order. In
this problem, the limit %ith respect to zo must he evaluated first. In fact, the double limit obtained
by letting 8, - 61 - 2.a6r/c approach zero, followed by zo approaching one, does not even exist.

IEven though it is assumed that ri < r, and ro, < ro2 (hence 0,Oo E [r/2,r )) in the preceding
arguments and figures. the results thus far are true for all 0,Oo E [0,2-r).

4. APPROXIMATIONS TO THE EXACT EXPRESSIONS

The exact expressions of the errors given by Eqs.(20) depend on the parameter "t, w hich lies in
the open interval (0, 1). In particular, an implicit dependence occurs in Sr and r, or, equivalently,
in the individual ranges r, and r,. It is fiirther assumed that I is smal enough to guarantee the
convergence of the binomial series representations of r, and T2 . Consequently,

7~~ 7"3 "
ZSin 0+ L 2 os2 +

r = 2 , si, itcos o + o(y)}, (22(a))

1 = ir + Isin 0 + L-COS2 -- sin 0 cos2 0 + 0(7') (22(b))

2 c 1}

7
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which imply
73

r= -sinO - sin cos 2 0 + 0(Y 4), (23(a))
r 8

8a 2 2 o + ocv4), (23(b))

={ 7  sin0- fsin0cos2 0 + O(-Y4)}. (23(c))

Tie O-notation means terms of that order and higher.
The preceding three expressions can be approximated by truncating the appropriate infinite

series. Tie least accurate approximations are obtained by eliminating all terms with - raised to a
power greater than or equal to one or two, which are respectively called the zeroth- and first-order
approximations and are designated by zero and one subscripts. For example,

tan -Y = 7Cos 0 Z1 (24(a)
ta2 Io + 2z0 cos [62 - - (2w-yr/c) sin ]' (024())

Rei = -/sin0 1 - o
zR + 1 + 2Zo cos[62 - 51 - (2wyr/c)sinO" (24(b))

6z "z + I + 2zo cos[62 - 61 - (2w'yrlc) sinG

Ar1 =T-rcosoh{1+-ysinO za (24(c))
+t + ++izo cos[62 -61 -(2yr/c)sin

ALI = rsin l { 1 + - sinG +40 (24(d))I Za + I + 2-o Cos [62 - 61- (2w- ) si~o "t 01 1 -

Equations (24) are valid for zo $ 1. When zo = 1, tan ' 1 and Rei are zero, Arl is r(l - cosfl),
and AL1 is rsin tl.

Analogous expressions for Eqs. (24) from Ref. I [Eqs. (1.11) and (1.14)] are given by

tan Ob l Cos q 1 -z (25(a))
2r, z5+I + 2zocos[(2,1/c)sinqJ'

lIsin q 1 - zAro Sil=& (215(b))
:2 z + 1 + 2zo cos[(2t1/c) sin q')

A- Lo 1coo 1 (25(c))
ALo6 =-lcosqza + I + 2o cos[(2wl/c) sin q] (

To account for the apparent sign errors in the formulae for 4) and 0 of Ref. 1 [pp. 7,9], minus signs
are inserted following the equal signs in Eqs. (25). A shimilar sign difference ib also found in Ref.
10 (p. 1822] in the equivalent expression denoted t0, on which the result of Ref. I is based.

First note that the parameter "r" of Ref. I is an approximation to the actual range r. In
particular, it is r, tie average of rl and r.. To make comIparisons between the results of Ref.
1 and the exact and approximate expressions of this report, their 'r" ha.s been replaced with ra.
Consequently, the center of their moving coordinate axis is situated at Oob at a distance r . from
0 (Fig. 2).

Secondly, the directed angle q is mineasured from the line segment 0'0 to the perpendicular
bisector of PIP2 oil the 0 side of P'± 2. It is not clear from Refs.1 and 10 how q is defined. So the

8
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aforementioned definition is selected. For the geometry of Fig. 2, q is related to 0 by 0 + q = .In
fact? the relationship between 0 and q for arbitrary configurations is given by

f 0, for 0 <G0<r/2
0 + q= t -,, for ;-2 <0 <3-,.2 (26)

27,, for 3-./2 <G0<2;r.

True authors of Ref. I [pp. '4 12J never explicitly state what approximations are used for
r, and r,, but they apparently follow the work of Ref. 10, which employs the approximations
r- (1/2) sini q and r + (1/2) sin q. respectively. The geometrical significance of this approximation

can be understood by consulting Fig. 2 and observing that 11 =(1/2)sinq is the distance of P1

and P2 from the line throughi 0' peCrpendicullar toF. Hence r, and r, are approximated by their
projections onto the line through 0 and O~b. Although it cannot be stated with absolute ceitainty,
it is likely that their approximation is related to the far* field assumption of parallel lines: the
two triads of line segments that connect P, to 0', P1, P2 and 0 to the same three points are
approximatel3 parallel. As a final comment, the selection of expressions to represent ANr~t and
AL~b is disturbing becau.,e the choice is independent of .0. According to the graphical depiction of
Ref. 1 [rig. 1.3, p. S]. Ar06 and ALb are the radial and perpendicular components of the vector
error 75. Thus they mnust depend on the angular error 5 in the same manner tha: Eqs. (20(c)),
(20(d)), (24(c)), and (2 1(d)) do, which is in opposition to the analytical definitions attributed to
thenm by Eqs. (215(b)) and (25(c)). Consequently, the respective differences amiong AXr, .1Lp and
Ar0 6, A \L 06 [(Ar&) 2 + (L) 2 I will be examinedl imore closely.

Because they are concerned %ith an accurate characterization of the range and angular errors,
the three approximations ("r." r1 , r,) taRe.Iiaksrcmprant. In essence. they introduce

an intrinsic error at the outset to all subsequent equations. To ascertain the geometrical effect of
substituting ra for r. solve Eq.(10(b)) for rto obtain

T = ra 1,Pi (27)

Clearly, r is a, function of the target orientation (0) to the radar and the extent (1) of the target
relative to tike awerage range (r.) of the two scatterers. Since the numerator of the radind is less
than Lte deniominator. r < Ta.- Hence, as indicatedl in Fig. 2. 0,b is farther away from 0 than 0'.
More importantly, Lte radIicand v-aries between ~/ 1)(r)and I for any %-nlne of 0. Hence
Lte approximation of r by Ta is only asgood ais the approximation of I by J I)(r)

Substitutinug q ;r- 0 into Eqs. (2.3)) yields

IcosG
tan ~2r. -2+1I+2zocos [(2.4-/c). sin~j (2S]'

Isinfl_ _ _ _ _ __ _ _ _ _ _

Ar0 6 = - 2 +1I+ 2p cosf(2w,1/c)sin 01,(R')

A 14 6 =lcosO + I + l-z -cos( 8( )

Upon identifying r with r. in Eqs. (2.0), Eq. 2())is identical to Eq. (2.1(a)) when 62 - 61 = 0;
however,

(Ar - r(1 - cos an ( AL. - rsinO, (29)

9
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rather thar Arl and ALI agree with Arob and .ALob. In light of the preceding discussion, the
disagreements between Arob and Ar1 and ALob and ALi are not unexpected. In addition, Eq.
(24(a)) is equivalent to Ref. 3 [Eq. (3)] with the identification of r tan €, 62 - 61 - 0, 1, 0, and zo
to E, 0 + L sin b, L, ?P, and a. Lastly, observe that the only effect of changing the range of 0 from
[7r/2, 37r/2) to [0, 7/2) U [37r/2, 27) is to change the sign for each of Eqs. (28).

5. EXAMPLES

For very small -y, the first-order approximations are very good; however, these results may not
be accurate enough for all situations of interest. In addition, it is not clear analytically how good
the approximations of Ref. 1 are. Therefore a comparison between the exact and approximate
representations of the range and angular errors is now undertaken by considering two examples for
zo = 0.5 and for a carrier frequency of 10 GHz. To represent a large aircraft, the scattering centers
are separated by 50 m. Hence, for an aircraft that is landing or one that is 200 nmi from the radar,
the respective 7s are 0.05 and 0.00025. The examples are treated in that order.

Figures 3(a) through 3(c) indicate that the absolute value of the angular errors of Eqs. (20(a)),
(24(a)), and (28(a)) can get up to 0.07 rad (4.00), which is not insignificant. In fact, the approxi-
mations are nearly equal since their difference lies in the interval [-0.00003,0.00003] rad (Fig. 3(b)).
The difference between 0ob and 0 (hence between q1 and q) fluctuates between -0.06 and 0.06 rad
(Fig. 3(c)). Since the differences, 0 - 0ob and 0 - €1, can be as large as the actual angular error,
neither approximation is good foi all ranges of 0.

In terms of the radial range error, Fig. 4(a) shows that IArl can be 150 m, which is three times
the separation between the scattering centers. Since the ratio lAr/Arobl is often greater than 1 and
can be as large as 15 (Fig. 4(b)), IArobl could be a mere 10 m, one-fifteenth the actual radial error.
Clearly Arob is not a good measure of this error and is particularly bad near 0 equal 0, 7r, and 2r,
where the graph of IAr/Arobj appears to blow up. In contrast, Ar 1 is a better approximation of
Ar (Fig. 4(c)) roughly by a factor of two for the entire range of 0; but in small intervals about 7r/2
and 3ir/2, the approximation is excellent.

Figure 5 provides a comparison of the various transverse errors. The absolute value of the
actual transverse error can reach 65 m (Fig 5(a)), and IAL/ALobI can be as high as 4 (Fig. 5(b)).
Therefore ALob is not a good estimate of this error. However AL1 is an even poorer approximation
of AL (Fig. 5(c)) since ALI = 2ALob, c.cept for 0 near 0, 7r/2, 7r, 37r/2, and 2r, where AL 1 is a
very good estimate of AL.

Since lAr/Arobi and IAL/ALobl are as large as 15 and 4, respectively, and the maximum of
p is 150 m (Fig. 6(a)), one expects the maximum of pI[(Arob)2 + (ALob) 2]1/2 to have an upper
bound of 150/V/24 f- 9.66. This expectation is verified by Fig. 6(b), where the maximum value is
nearly 7. Therefore [(Arob)2 + (ALob) 2]1/ 2 is a poor measure of p. Similarly, p1 is a poor estimate
of p except for values of 0 centered about 0, 7r/2, 7r, 37r/2, and 27r (Fig. 6(c)).

The preceding example demonstrates that the first-order approximations of Eqs.(24) and the
expressions of Ref. 1 can be poor representations of the angular, radial range, and transverse range
errors. In such instances, one should rely on the exact errors (Eqs.(20)).

Comparisons of the errors for the second example (7 = 0.00025) are displayed in Figs. 7
through 10. The range errors (AL, Ar, and p) have essentially the same form and magnitude
as the preceding example, and the angular error 0 has the same form but is 200 times smaller.
However, the behavior of the approximations relative to the errors is significantly different; for
example, the symmetry about 0 = r may be absent (Figs. 7(c), 8(b), 9(b), 10(c)). In addition,
excursions of the first-order approximations from the actual errors are much smaller than those
of the first example, and the analytical relationships among the exact errors and both sets of
approximations are apparent for small values of 7. In particular, 0 = 0ob q1, Ar = Arl =- 2Arob,

10



NRL REPORT 9349

and AL = AL, = ALob/2; and Ar, AL, p, and 0 respectively lie in [-150 m,150 m], [-75 m,75 m],
[0,150 m], and '-0.5 mrad,0.5 mrad] (see Figs. 7(a) through 10(a)).

Both approximations to the angular error C are excellent. Since €1 and q0 b are indistinguishable
up to the twelfth decimal, only 0 - 4ob is sketched (Fig. 7(c)). This difference gets no larger than
3 x 10' rad. The first-order approximations of AL, Ar, and p are also vry good except possibly
at 0 equal 0, 7r, and 27r (Figs. 8(c), 9(c), 10(c)). In contrast, the transverse and radial errors of
Ref. 1 apparently converge to multiples of the actual errors except possibly near 0, 7r, and 2ir (Figs.
8(b), 9(b)); while VF, b + Aib smoothly oscillates between one-half and twice the actual error
p (Fig. 10(b)).

11
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Fig. 3 - Plots of 4,~ o'and ,b versus 0, all of which are in radians
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Fig. 5 - Plots of AL, IAL / ALAcI, and IAL/ AL 11 versus 0
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Fig. 7 - Plots of ,4,- ~b'and - , versus 0, all of which~ are in radians
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6. LIMITS OF THE RATIO OF THE RANGE ERRORS

To address the issue of whether the approximations converge to the transverse and radial
errors, analytical expressions for Ar/Ar1 , Ar/Aob, AL/ALI, and AL/ALob are now considered
for 62 - 6, = 0. Evaluation of the limits of these quotients as -y approaches zero for fixed 0 is treated
first. Then the limits as 0 approaches 0, 7r, and 27r for fixed -y are evaluated because the ratios
may be zero or may not exist. The behavior at these specific 0 for small -y are then determined by
taking a second limit as 7 approaches zero.

Equations (20), (23), (24), and (28) yield

LAL _ sinql~ 1+f"8cs27  734+s0fncs0 O~A i 1 + 2 0 + 0(- 4) + [- sin 0 cos 2 0 + 0(})

zo + 1 + 2zo cos [(2wr/c) (-Ysin0 - sin0cos 0 + o(74))
-rlTsn 1-z~w

1 o +,sn 1 + 2 s r/si], (30(a))

+ + 1 + 2zcos[(2wry/c)sin0(

Arj - sin 0 cos 2 + 0 ( 4)

z6 +1+ 2z0 cos [(2wrlc) (7 sin 0 - sin o S2 0 + o(-y4))] J
+ {l - , co1m i+ sin0 +1[40 ])} (30(b))

AL _ +" 7 3+ o inOo 2 0

o+ +2zo cos[(2wr.Ic)(7in - s ocos20o+ 0(y'4))J

z 6c o 22 wrs/c)sino

AL I / oo,4+yil 3

A,-o- l = ClOS L Sli+los2+o(Y")+ [ si,,- siOcos2-O+0 ( 74)l

Ar 0  cs~b 8

z6 + 1 + 2zo cos (2wr/c)
c7I o Sil0c0s2 0 + 0(7')) 

_{ 7s1 0  l-z 1 (30(d))

z o + + 2z cos [(2wr7Ic) sin Oj
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Observe that
lim =0, lim 4 1 = 0, lim tan (31)
--, -- 00- .-*o tan4 1  - 1;

and consequently

lim =lim 1. (32)-- 0 -- 0 sin 1

From Eqs. (30(a)), (30(b)), (31), and (32), it follows that

AL Ar- =1 and lrn - = 1. (33)
--- oAL -o Ar1

To determine the limit of Eq. (30(d)), an interim approximation of Ar/Arob is now obtained.
For small y, cos o may be replaced by unity. In addition, all terms with 7 raised to a power
exceeding one are eliminated. Thus, Eq. (30(d)) becomes

Ar r- r+r-2sin0 1o_[Z2

+ 1 + 2zo cos [(2wry/c)(sin 0)]

2 z2 + +2zo cos [(2wry/'c) sin 0] 1 34

from which
lim -=2. (35)
f-o Aro

Next consider

AL _ no zo2+1 +2zocos[(2wry/c)sin0]
ALb 7os 0 1- z0

x 1 + cos2 0 + 0(7 4 ) + - sin COS 2 0 + 0(1,)

X cos0oo ro 1 _ (36)

zo2 + 1 + 2zo cos [(2wr'y/c) sin 0]
The bracketed expression to the right of the first times sign goes to unity as 7 --. 0; so it remains
to ascertain the behavior of the term involving 0. In particular, for small I1 (and hence small 0),sin 0 is replaced by tan 0, Eq. (20(a)) is applied, and the limit is evaluated to obtain

AL in zo2+l1+2zocos[(2wr-flc)sin0] I
lil = lin (37)7-o ALob ,y-o 7cos0 I - z-2(3

The behavior of the quotients in Eqs. (30) for 0 equal to 0, -r, and 2-r are now determined by
evaluating .he limits as 0 approaches these values and taking the resultant limits, if possible, as I
approaches zero.

For fixed -y,

Ar l+= m/ .0 ) , (38)
o-0..,2- Arl I -(I+:o -
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for z0 1 1, which leads to
(2

lint0 l-0imi r 1 - (39)

Clearly this expression has an infinite discontinuity at z0 = 1. Thus as zo approaches unity, the
limit of the absolute value of Ar/Arl tends to positive infinity.

Letting zo = 0.5 in Eq. (39) yields 8 for the absolute value of this double limit. Upon inspection
of Figs. 4(c) and 8(c), one can see that the analytical and graphical results are in agreement for 0
equal 0, ,r, and 2-i.

In comparison, the limits of Ar/Arob as 0 approaches 0, ir, and 2-r do not exist since

lim Arob=O and lim Ar=r - 1 (40)
+ ±7 (-_-0)2j

4 (1+zo) 2

but in the extended real numbers,

lim IAr {= +00. (41)0 0111r,2I Ar0 6

This is exhibited in Figs. 4(b) and 8(b), where the curves have sharp jumps at 0 equal 0, -,, and 2ir.
These jumps are similar to those of Figs. 4(c) and 8(c), except that in the present case, instead of
finite values for the functic .t these 0, the functions are undefined and have vertical asymptotes.

The expressions for the ,atios of the transverse errors are a bit simpler. More specifically,
22

lim AL = +1 and lim AL. I '_+___ -_
0-,2- ALI 1  4 0 . AL 6  2 + (42)

where Eqs. (42) are valid for all positive zo. Hence

lira lirn = 1 and lim lr -- = -. (43)
7-0 -0,,2.. AL, 1 - o- ,,2, AL 0 b 2

In general, as 7 decreases to zero, all errors become smoother, the first-order approximations
ap)roach the actual errors, and Arob and ALob approach Ar/2 and 2AL, respectively, except near
0 equal to 0, -r, and 2r. Hence ALob is eventually an upper bound for AL so that the transverse
error is less than ALob. On the other hand, Arob is double the actual radial range error for very
small -. Therefore Arob and ALob are not good estimates Ar and AL for small 7 and 0 not near
0, r. and 2-r; however, the relationships among them are precisely known.

All of these analytically derived conclusions about the behavior of tie two sets of approxima-
tions for small 7 can be seen in Figs. 7 through 10. The first-order approximation to the transverse
range error AL is excellent (Fig. 9(c), Eq. (33)), even for 0 near 0, ir, 2r (Eq. (13)). The radial
range error Art closely approximates Ar (Fig. 8(c)) except near 0, r, 2r, where the ratio increases
to a finite, nonzero value in accordance with Eqs. (33) and (39). Lastly, the predicted relationships
(Eqs. (35), (37), (11), (42)) between the approximations of Ref. I and the exact range errors are
displayed in Figs. 8(b) and 9(b).

Generally it turns out that the first-order approximations of the range errors are excellent for
7 E [0,0.000001], are good for '7 E (0.000001,0.0003], are fair for 'Y E (0.0003,0.005], and are poor
for 7 E (0.00.5, 1.01. Appropriate multiples of the range estimates of Ref. I behave similarly. Also
both approximations to the angular error are accurate for ") smaller than 0.005.
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7. SUMMARY

Based on the assumption that the measured centroid of a two-point target is determined from
the phase i's of the composite signal of the individual returns, exact expressions for the angular,
transverse range, radial range, and vector errors have been derived. These errors depend on six
parameters: the transmission frequency (2-rf = j); the range to the centroid of the two scatterers
(r); the difference between the phases induced by each scatterer (62 - 61); the ratio of the amplitudes
of the individual scatterers (zo); the angle between the line segment from the centroid to the radar
and the perpendicular bisector of the line segment connecting the scatterers (0); and the ratio of
the distance between the scatterers to the centroidal range (-").

Examples are analyzed for specific choices of f, zo, and 82 - 61 (10 GlIz, 0.5, and 0 rad). Tw.)
conclusions can be drawn from this analysis. First, the magnitude of the vector error the distance
between the measured and actual target centroids can be large even for small values of Y. In one
example where -t = 0.00025, this error is three times the distance between the scatterers for some
target orien?..ions, whith means the measured target location could be off by three body lengths.
Consequently, the measured location can be well away from the actual target.

Second, approximate formulae for the angular and range errors, such as the far field approxima
tion to the geometry, should not be used in place of exact expressions %ithout proper consideration
of the errors incurred by their use. It has been demonstrated that such approximations can diverge
substantially from the actual errors. In particular, the formulae of Ref. I may not be adequate
for representing the radial and transverse range errors when 1 > 0.00025, since these estimates
of the errors are twice and one half the real values, respectively, for small 1, while the first-order
approximations derived herein are inaccurate for -y in excess of 0.005. Therefore when I > 0.005,
exact expressions or more accurate approximations for the errors must be used if one %ishes to
get an accurate assessment of the range and angular errors. On the other hand, for -1 < 0.005,
the first-order approximations are valid. Even the radial and transverse range errors of Ref. I
can be used, provided their relationships to the actual range errors are kept in mind. Although
a ,,roe dimensional analysis both for two point and N point targets would be more reaE ic, this
two-dimensional analysis provides additional insight into the glint problem.

This analysis indicates that the glint phenomena may be caased in part by the inherent error
in the positional measurement. If this error is deemed significant and is attributable to a theoretical
formulation that re.sulted in the equations specifying position, then the theor% should be revamped
to account for this. Even if the existing theory is correct, an explanation of this error should be
sought. The situation is complicated further by the introduction of an additional error through
alpproximations to the theoretical expressions for the position. Whether the combination of the
inherent and approximation induced errors reduces or increases the measured positional error is
unclear. In terms of application to a radar system, errors of the magnitudes demonstrated herein
may be significant. For example, a 4* angular error for an incoming object could be cr3 important.
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